Curing Idiopathic Pulmonary Fibrosis with Thyroid Hormone Mimetics

Milica Vukmirovic PhD, Kaminski Lab
Pulmonary, Critical Care and Sleep Medicine at Yale
Milica.Vukmirovic@yale.edu
The Team

Naftali Kaminski, MD
Lead investigator, Chief, Yale PCCSM

Guyoing Yu, PhD
Scientist, Yale PCCSM

Argyris Tzuovelakis, MD, PhD
Clinical Expert, Fleming Institute, Athens

Milica Vukmirovic, PhD
Business Development, Yale PCCSM

John Puziss, PhD
Director of Business Development, OCR, Yale

- Award winning team
- Over 250 publications in top general and pulmonary journals
- Over 40 million dollars in NIH grants in 10 years
- Track record of discovery and innovation
 - New Molecular targets
 - Biomarkers
 - Industry collaborations and relations
Idiopathic Pulmonary Fibrosis

- A lethal progressive scarring chronic lung disease of unknown origin
- 190,000 patients in the US; 6M worldwide
- Median survival 3 years (30,000 deaths a year)
- The 2 FDA approved drugs have significant side effects and do not have an obvious impact on survival or quality of life
- Sales in 2015 Esbriet (>300M, Roche), Ofev ($300M, Boehringer Ingelheim)
- The need is – a safe drug with a positive effect on survival and quality of life
Key Finding: Thyroid Hormone Agonism Reverses Pulmonary Fibrosis

Yu et al. Nature Medicine December 2017; https://www.nature.com/articles/nm.4447
Our Approach

Repurpose the well characterized thyroid hormone mimetic, Sobetirome, to target pathways directly related to human fibrosis

<table>
<thead>
<tr>
<th>Year</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Sobetirome - A highly potent thyroid hormone agonist, lacking any thyrotoxic side effects and orally available
Off formulation patent</td>
</tr>
<tr>
<td>2005-08</td>
<td>Licensed to QuatRx for treatment of hypercholesterolemia
FDA approved clinical development (Phase 1)
Clinical proof of concept demonstrated</td>
</tr>
<tr>
<td>2010</td>
<td>Neurovia acquired IND for Sobetirome
Development of treatment of X-linked Adrenoleukodystrophy (X-ALD)</td>
</tr>
<tr>
<td>2017</td>
<td>Completed Phase 1a, now in X-ALD patients (Phase 1, 2)
Orphan neurologic disease designation
Secured investors: Novartis Venture Funds, Sanofi-Genzyme, BioMed Ventures, ENSO ($14M, Series A)</td>
</tr>
</tbody>
</table>
Sobetirome Resolves Established Lung Fibrosis in vivo

Sobetirome (GC-1) Restores Mitochondrial Homeostasis and Bioenergetics After Bleomycin Injury

Yale PCT filed 6.29.2017, NK lead inventor

Yu et al. Nature Medicine December 2017; https://www.nature.com/articles/nm.4447
Development

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
</tbody>
</table>

RAT GLP (oral and local)
- **Q1**:
 - PK/PD
 - Dose optimization
 - Detailed toxicology

Real world dog efficacy
- **Year 1**:
 - Protocol Approval
 - Recruitment
 - Performance of study

Regulatory
- **Year 1**:
 - Engage Regulatory Consultants
 - Negotiation with Neurovia
- **Year 2**:
 - Orphan Drug Designation
 - IND Application

Phase 1 studies in humans
Real World Sobetirome Efficacy Pilot Trial in West Highland White Terrier Dogs (Yale/Tufts/Westie Foundation collaboration)

- Progressive fibrosis is seen in WHWT
- Shortened survival
- Cough and exercise limitation
- Accentuated subpleural and peribronchiolar fibrosis with occasional “honeycombing” and profound alveolar epithelial changes but no fibroblastic foci
- CT scans - mosaic ground-glass and mild honeycombing patterns

Dose escalation from 1 to 2.5mcg/Kg – 3 healthy dogs (sobetirome levels, chemistry)

Short term safety – 2 weeks of 2.5 mcg/Kg (sobetirome levels, chemistry, QOL and tox monitoring)

Treatment of IPF dogs (8) for 6 months (CT, 6MWT, QOL, Biomarkers)
Potential for Further Development of TH Mimetics to Treat Fibrosis

Market in Billions!